
https://doi.org/10.4046/trd.2023.0037 https://e-trd.org/ 22

Review

Immune Evasion of G-CSF and GM-CSF in 
Lung Cancer

Yeonhee Park, M.D., Ph.D.1   and Chaeuk Chung, M.D., Ph.D.2,3  
1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College 
of Medicine, The Catholic University of Korea, Daejeon, 2Division of Pulmonology and Critical Care Medicine, Department 
of Internal Medicine, 3Infection Control Convergence Research Center, Chungnam National University College of Medicine, 
Daejeon, Republic of Korea

https://doi.org/10.4046/trd.2023.0037

ISSN:  1738-3536(Print)/ 
2005-6184(Online)  

Tuberc Respir Dis 2024;87:22-30

Copyright © 2024 The Korean 
Academy of Tuberculosis and 
Respiratory Diseases

Address for correspondence 
Chaeuk Chung, M.D., Ph.D. 
Division of Pulmonology 
and Critical Care Medicine, 
Department of Internal Medicine, 
Chungnam National University 
College of Medicine, 282 
Munhwa-ro, Jung-gu, Daejeon 
35015, Republic of Korea
Phone 82-42-280-7147
E-mail universe7903@gmail.com
Received Mar. 23, 2023 
Revised Jul. 20, 2023 
Accepted Sep. 12, 2023
Published online Sep. 20, 2023

 It is identical to the Creative 
Commons Attribution Non-
Commercial License (http://
creativecommons.org/licenses/
by-nc/4.0/).

Abstract

Tumor immune evasion is a complex process that involves various mechanisms, such 
as antigen recognition restriction, immune system suppression, and T cell exhaustion. 
The tumor microenvironment contains various immune cells involved in immune eva-
sion. Recent studies have demonstrated that granulocyte colony-stimulating factor 
(G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce im-
mune evasion in lung cancer by modulating neutrophils and myeloid-derived suppres-
sor cells. Here we describe the origin and function of G-CSF and GM-CSF, particularly 
their role in immune evasion in lung cancer. In addition, their effects on programmed 
death-ligand 1 expression and clinical implications are discussed.
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Introduction

Immune evasion hinders the effective treatment of 
lung cancer with immune checkpoint inhibitors. Pro-
grammed death-ligand 1 (PD-L1) binds to programmed 
cell death-1 (PD-1) receptors on cytotoxic T cells to 
inhibit T cells and decrease cytokine production1-3. In 
addition, neutrophils and myeloid-derived suppressor 
cells (MDSCs) inhibit immune responses within the 
tumor microenvironment. Recent studies have demon-
strated that granulocyte colony-stimulating factor 
(G-CSF) and granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) induce immune evasion through 
various mechanisms4-10. Clinical studies have demon-
strated that high levels of G-CSF and GM-CSF are asso-
ciated with a poor prognosis11-13. Moreover, exogenous 
GM-CSF induces PD-L1 expression and promotes tu-
mor progression8,10,14,15. 

Here we describe the origin and functions of G-CSF 
and GM-CSF in lung cancer, focusing on their role in 
modulating neutrophils, MDSCs, and PD-L1 expres-
sion.

Origin and Function of G-CSF/GM-CSF 

G-CSF and GM-CSF are essential growth factors for he-
matopoiesis. GM-CSF causes the proliferation and dif-
ferentiation of myeloid cells, whereas G-CSF regulates 
neutrophil production, maturation, and mobilization. 
Vascular endothelial cells, fibroblasts, and immune 
cells, such as T cells, B cells, macrophages, natural kill-
er cells, and mast cells, produce GM-CSF in response 
to inflammatory cytokines and the innate immune 
response16. In turn, GM-CSF affects myeloid cell differ-
entiation, maturation, activation, proliferation, mobili-
zation, and survival17. Conversely, G-CSF promotes the 
production, maturation, and migration of neutrophils 
from the bone marrow to the bloodstream18. Clinicians 
frequently use recombinant G-CSF and GM-CSF to in-
crease the absolute neutrophil count in cancer patients 
who develop neutropenia following chemotherapy.

Immune Evasion in Lung Cancer by G-CSF/
GM-CSF by Modulating Neutrophils, 
Macrophages and MDSCs

Lung cancer cells secrete G-CSF and GM-CSF to evade 
the immune system in response to oncogenic and im-
munologic signals19. Tumor-derived G-CSF reprograms 
myeloid differentiation and produces immunosuppres-
sive neutrophils (Figure 1)20,21. Neutrophils play a major 
role in innate immunity against bacterial infections. 

In the bone marrow, myeloblasts differentiate into 
promyelocytes, neutrophilic myelocytes, neutrophilic 
metamyelocytes, neutrophil stab cells, and segmented 
neutrophils. Mature segmented neutrophils differenti-
ate into small, high-density neutrophils with anti-tumor 
effects, whereas undifferentiated neutrophils are large, 
low-density neutrophils with pro-tumorous effects22. 
Immature neutrophils typically remain in the bone mar-
row under normal conditions. However, in cancer pa-
tients, stimulated low-density neutrophils migrate from 
the bone marrow to the blood. MDSCs are low-density 
neutrophils23; their levels in the blood are increased 
by cancer-derived endogenous and exogenous G-CSF 
and GM-CSF24. MDSCs consist of heterogeneous 
precursors of dendritic cells, macrophages, and gran-
ulocytes. Recent studies have demonstrated that 70% 
to 80% of MDSCs are polymorphonuclear cells, and 
20% to 30% are monocytic cells25. These cells cause 
immune suppression in the tumor microenvironment, 
presenting a significant barrier to cancer immunother-
apy26. They inhibit the CD8-positive cytotoxic T cells, 
thereby inhibiting the effects of immune checkpoint 
inhibitors. In addition, prostaglandin E2 derived from 
MDSCs can accumulate cancer stem cells and induce 
PD-L1 overexpression, resulting in immune suppres-
sion27. 

Tumor-associated macrophages (TAMs) are the key 
cells that create an immunosuppressive tumor microen-
vironment by producing cytokines, chemokines, growth 
factors, and triggering the release of inhibitory immune 
checkpoint proteins in T cells. TAMs can display very 
different and even opposing phenotypes, depending 
on the microenvironment in which they are embedded. 
Macrophages are divided into two main categories: 
classical activated M1 macrophages (major histocom-
patibility complex [MHC]-II+CD68+) and alternatively 
activated M2 macrophages (CD163+CD206+). M1 
macrophages have an anti-tumor function, as they are 
responsible for killing tumor cells through tumor-kill-
ing molecules or antibody-dependent cell-mediated 
cytotoxicity. In contrast, M2 macrophages promote the 
proliferation and metastasis of tumor cells by express-
ing various growth factors such as vascular endothelial 
growth factor, transforming growth factor-β1 (TGF-β1), 
epithelial growth factor, and hepatocyte growth factor 
(HGF)7,28,29. 

In human triple-negative breast cancer, high G-CSF 
expression is significantly associated with CD163+ 
TAMs and decreased overall survival. In vitro and in vivo 
data using a panel of human breast cancer and mouse 
mammary tumor cell lines have demonstrated that tu-
mor-derived GM-CSF is an important cytokine involved 
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in the activation of signal transducer and activator of 
transcription 5 (STAT5) signaling in macrophages30.

There are two distinct types of neutrophils, N1 and 
N2 tumor-associated neutrophils (TANs). N1 TANs 
inhibit tumor growth and metastasis through anti-
body-dependent or direct cytotoxicity and activation 
of various innate and adaptive immune cells31-33. Ad-
ditionally, N1 TANs produces reactive oxygen species 
through enhanced nicotinamide adenine dinucleotide 
phosphate hydrogen oxidase activity, thereby exerting 
a cytotoxic effect on tumor cells34. Conversely, N2 TANs 
promote tumor progression through multiple mech-
anisms. N2 TANs secrete several enzymes, such as 
myeloperoxidase, neutrophil elastase (NE), neutrophil 
collagenase (matrix metallopeptidase 8 [MMP8]), and 
MMP9, which promote extracellular matrix remodeling 
and angiogenesis, resulting in tumor proliferation and 
promote migration35,36. Moreover, N2 TANs inhibit the 
function of effector T lymphocytes by recruiting Tregs 

via CC motif chemokine ligand 17 (CCL17) secretion37. 
TGF-β is known to be an important cytokine involved 
in the skewing of neutrophil differentiation toward N2 
TANs33,38,39, while treatment with TGF-β blockade and 
interferon-β showed a shift toward N1 TANs40,41.

Neutrophils release an intracellular web-like chromat-
ic structure called neutrophil extracellular traps (NETs), 
which induce an immune response against infections, 
particularly by large pathogens42. These are released 
through plasma membrane rupture or expel nuclear 
chromatin without plasma membrane rupture. NET-as-
sociated granule proteins promote tumor metastasis 
by releasing NE and matrix metalloproteases. These 
proteases cause cancer cells to undergo metastasis43. 

Tumor-derived G-CSF/GM-CSF induces activation 
and proliferation of TANs. G-CSF secreted from can-
cer cells induced TANs to form NETs35. Hepatocellular 
carcinoma-derived GM-CSF stimulated cancer cell mi-
gration and invasion by enabling TANs to produce HGF 

Tumor cell MDSC T cell NK cell Treg cell M2
macrophage

Neutrophil Endothelial
cell

Tumor cell

NETosis

G-CSF

GM-CSF

Figure 1. Schematic diagram of immune evasion by granulocyte colony-stimulating factor (G-CSF) and granulocyte-
macrophage colony-stimulating factor (GM-CSF) in lung cancer. Lung cancer cells secrete G-CSF and GM-CSF, which 
modulate myeloid differentiation, produce immunosuppressive neutrophils, and induce the accumulation of myeloid-
derived suppressor cells (MDSCs) in circulation. In turn, MDSCs induce the production of Tregs and differentiation of M2 
macrophages, reduce natural killer cell activity, and inhibit T cell proliferation and migration. In addition, neutrophil ex-
tracellular trap (NET)-associated granule proteins promote tumor metastasis by secreting neutrophil elastase and matrix 
metalloproteases. NK: natural killer.



The crucial roles of G-CSF and GM-CSF

https://e-trd.org/Tuberc Respir Dis 2024;87:22-30 25

and activating the HGF/c-Met axis44. Bv8 may function 
to modulate or amplify neutrophil mobilization stimu-
lated by G-CSF, through paracrine or autocrine mech-
anisms45. Tumor-derived G-CSF activates a myeloid 
differentiation program, resulting in increased immuno-
suppressive neutrophils that possess T cell-suppres-
sive, and retinoblastoma protein (Rb1)low phenotype in 
an oncogene-driven murine breast cancer model20.

In addition, G-CSF causes tumor growth, metasta-
sis, and chemotherapy resistance46-49. Several studies 
have shown that a high G-CSF level is associated with 
thrombosis and a poor prognosis50. 

Effects of G-CSF/GM-CSF on PD-L1 

Some patients develop remarkable progression of ex-
tra-nodal natural killer/T cell lymphoma (ENKTL) after 
GM-CSF treatment. GM-CSF treatment significantly 
increases the expression of PD-L1 mRNA and protein 
in ENKTL cells. Because PD-L1 has immunosuppres-
sive functions, GM-CSF treatment results in the loss of 
tumor immune surveillance in ENKTL patients, acceler-
ating cancer cell progression. GM-CSF stimulates PD-
L1 expression through the Janus kinase 2 (JAK2)-STAT5 
signaling pathway in ENKTL10.

PD-L1 expression is regulated by multiple signaling 
pathways, such as MYC, Kirsten rat sarcoma virus 
(KRAS), STAT3, JUN, phosphatase and tensin homolog 
(PTEN), and epidermal growth factor receptor (EGFR), 
which are responsible for the constitutive expression of 
PD-L151. In addition, interferon-γ, interleukin-6, interleu-
kin-27, tumor necrosis factor-α, and epidermal growth 
factor induce PD-L1 expression52. The interaction be-
tween PD-L1 and PD-1 activates downstream signaling 
pathways, such as phosphoinositide-3-kinase (PI3K), 
Linker for activation of T cells (LAT), and Src homology 
region 2-containing protein tyrosine phosphatase 2 
(SHP2), in T cells, which inhibits T cell activation and 
cytokine production53. Immune checkpoint inhibitors, 
including pembrolizumab, nivolumab, and atezolizum-
ab, reactivate cytotoxic T cells and overcome immune 
evasion. In a recent in vitro study using lung adenocar-
cinoma cell lines and human monocyte-derived macro-
phages, it was suggested that cancer cell-derived GM-
CSF induces PD-L1 overexpression on TAMs through 
the STAT3 pathway (Figure 2)54.

Recent studies have demonstrated that PD-L1 has 
intrinsic functions independent of PD-155-57; it promotes 
cancer stemness, epithelial-mesenchymal transition, 
and drug resistance in cancer cells. PD-L1 contains 
RMLDVEKC and DTSSK motifs in the cytoplasmic do-
main, which inhibit interferon-mediated cytotoxicity in 

cancer cells by preventing STAT3 activation and subse-
quent caspase-7-mediated apoptosis55. A recent study 
demonstrated that PD-L1 was translocated to the nu-
cleus after deacetylation58. Nuclear PD-L1 modulates 
immune response gene expression and consequently 
decreases the effects of immune checkpoint inhibitors. 
Therefore, the prevention PD-L1 translocation is a nov-
el strategy for improving the outcomes of immunother-
apy in cancer. Because G-CSF enhances PD-L1 expres-
sion in cancer, G-CSF blockade may be used as a novel 
adjuvant treatment with immunotherapy. In the results 
of a preclinical study using a murine Lewis lung carci-
noma cell line, it was shown that blocking GM-CSF can 
significantly inhibit tumor development. Although anti-
GM-CSF therapy did not affect PD-L1 expression in 
tumor tissues, it suppressed the infiltration and matura-
tion of TAMs and increased T cell infiltration. Although 
further studies are still required, cancer-derived GM-
CSF may be a promising target for anti-cancer thera-
py54.

Miyazawa et al.59 showed that PD-L1 expression is 
affected by matrix stiffness in lung cancer and that it is 
much higher in a stiff than a soft matrix. Although the 
exact mechanism by which matrix stiffness affects PD-
L1 expression remains unknown, mechanosensitive 
Yes-associated proteins may be involved, as they reg-
ulate PD-L1 transcription. Some studies have shown 
that GM-CSF regulates the extracellular matrix by con-
trolling the metabolism of vascular collagens60. It also 
stimulates the proliferation and migration of vascular 
endothelial cells61. Therefore, GM-CSF can cause im-
mune evasion by altering PD-L1 expression and extra-
cellular matrix stiffness.

Clinical Uses of G-CSF and GM-CSF 

G-CSF/GM-CSF has been widely used as supportive 
care for patients receiving chemotherapy. The use of 
G-CSF/GM-CSF has shown to reduce the incidence 
of chemotherapy-associated neutropenia by 37% and 
decrease the duration and severity of neutropenia in 
patients undergoing cancer chemotherapy62. Howev-
er, recent reports have indicated that overexpression 
of G-CSF/GM-CSF is associated with poor prognosis 
in various types of cancers. In a clinical study, G-CSF 
level was significantly higher in patients who died than 
in those who survived gastric cancer63. In addition, a 
high G-CSF level was negatively correlated with overall 
survival. Furthermore, the G-CSF level was significantly 
higher in a mammary cancer model than in controls, 
and G-CSF blockade slowed tumor growth. Tumor-de-
rived G-CSF increases tumor growth through MD-
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SC-related immune reactions24. Serum levels of GM-
CSF in patients with glioblastoma are more than two-
fold higher than in healthy controls64. Patients with 
non-small cell lung cancer have higher GM-CSF levels 
compared to healthy controls. Therefore, GM-CSF is 
a potential diagnostic marker for non-small cell lung 
cancer65. G-CSF and GM-CSF upregulate the invasive 
capacity of human lung cancer cells by enhancing the 
production of extracellular matrix-degrading protein-
ases19. A clinical study of non-small cell lung cancer 
patients demonstrated that higher GM-CSF levels are 
positively correlated with poor prognosis66.

The ongoing clinical trials of G-CSF/GM-CSF in 
lung cancer are described in Table 1. Apart from one 
study using pegylated G-CSF, most studies utilized 
recombinant human GM-CSF, such as sargramostim. 
Moreover, these studies primarily investigate the use 
of G-CSF/GM-CSF in combination with other drugs for 

supportive care purposes, rather than confirming their 
therapeutic effects.

Interestingly, an in vivo study using a breast cancer 
model demonstrated that long-term exposure to high 
levels of G-CSF increased metastasis, while short-term 
G-CSF administration in conjunction with cytotoxic 
chemotherapy did not lead to increased metastasis67. 
Therefore, caution should be exercised in the use of 
recombinant G-CSF/GM-CSF as it has the potential to 
promote tumor progression and metastasis17.

Conclusion

Tumor-derived or recombinant G-CSF and GM-CSF 
have diverse roles in the tumor microenvironment. They 
disrupt granulopoiesis and neutrophil maturation and 
increase TANs, particularly pro-tumor N2 neutrophils, 
which promote tumor growth, invasion, and metastasis. 

GM-CSF PD-L1 PD-1 T cell

Immune suppressionImmune suppression

Tumor-intrinsic role of PD-L1Tumor-intrinsic role of PD-L1

: promote EMT, invasion, metastasis: promote EMT, invasion, metastasis

STAT3STAT3

STAT3STAT3

JAKJAKJAKJAK

Figure 2. Illustration of the immune evasion mechanism by which granulocyte-macrophage colony-stimulating factor 
(GM-CSF) increases programmed death-ligand 1 (PD-L1) expression on macrophage through the Janus kinase/signal 
transducer and activator of transcription (JAK-STAT3) signaling pathway in lung adenocarcinoma. PD-L1 upregulation 
causes immune suppression by inhibiting T cell activation in a programmed cell death-1 (PD-1)-dependent manner. In 
addition, PD-L1 promotes cancer cell proliferation, metastasis, and epithelial-mesenchymal transition. This figure high-
lights the potential therapeutic use of the JAK-STAT3-PD-L1 axis in lung adenocarcinoma. EMT: epithelial-mesenchymal 
transition.
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Furthermore, they mobilize immunosuppressive MD-
SCs into circulation, where MDSCs suppress natural 
killer and cytotoxic T cells. GM-CSF stimulates PD-L1 
expression, which has immunological and PD-1-inde-
pendent intrinsic functions. Because high G-CSF and 
GM-CSF levels are associated with poor prognosis 
in cancer patients, recombinant G-CSF and GM-CSF 
should be used cautiously.
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