2. Bousquet J, Kaltaev N. Global surveillance prevention and control of chronic respiratory diseases: a comprehensive approach [Internet]. Geneva: World Health Organization; 2007 [cited 2022 Nov 30]. Available from:
https://apps.who.int/iris/handle/10665/43776.
4. Pratali L, Marinoni A, Cogo A, Ujka K, Gilardoni S, Bernardi E, et al. Indoor air pollution exposure effects on lung and cardiovascular health in the High Himalayas, Nepal: an observational study. Eur J Intern Med 2019;61:81-7.
5. Currie J, Zivin JG, Mullins J, Neidell M. What do we know about short- and long-term effects of early-life exposure to pollution? Annu Rev Resour Economics 2014;6:217-47.
6. Boffetta P. Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res 2006;608:157-62.
8. Franklin BA, Brook R, Arden Pope C. Air pollution and cardiovascular disease. Curr Probl Cardiol 2015;40:207-38.
12. Parajuli I, Lee H, Shrestha KR. Indoor air quality and ventilation assessment of rural mountainous households of Nepal. Int J Sustain Built Environ 2016;5:301-11.
13. Saini J, Dutta M, Marques G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain Environ Res 2020;30:1-12.
14. Kim SJ, Son YS, Gang HS, Kim JC, Lee JH, Kin GS, et al. Compensation of particulated matter measurement by light scattering method. Proceedings of the 49th Meeting of KOSAE 2009: Korea Air Pollution Research Association Conference; 2009 Oct 22-24; Gunsan. Seoul: Korean Society for Atmospheric Environment; 2009. p. 613-5.
15. Kim SJ, Kang HS, Son YS, Yoon SL, Kim JC, Kim GS, et al. Compensation of light scattering method for real-time monitoring of particulate matters in subway stations. J Korean Soc Atmos Environ 2010;26:533-42.
16. Lee S, Lee JK. Visualization of the comparison between airborne dust concentration data of indoor rooms on a building model. J Korean Hous Assoc 2015;26:55-62.
17. Kim JH, Oh J, Choi JS, Ahn JY, Yoon G, Park JS. A study on the correction factor of optic scattering PM2.5 by gravimetric method. J Korean Soc Urban Environ 2014;14:41-7.
18. Lee N, Um HU, Cho HS. Development of detection and monitoring by light scattering in real time. Fire Sci Eng 2018;32:134-9.
19. Nguyen NH, Nguyen HX, Le TTB, Vu CD. Evaluating lowcost commercially available sensors for air quality monitoring and application of sensor calibration methods for improving accuracy. Open J Air Pollut 2021;10:1-17.
22. Kim HJ, Lee JH. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B Chem 2014;192:607-27.
23. Majder-Lopatka M. Effects of interfering gases in electrochemical sensors NH3 and NO2. In MATEC Web Conf 2018;247:00023.
24. Khan MA, Rao MV, Li Q. Recent advances in electrochemical sensors for detecting toxic gases: NO
2, SO
2 and H
2S. Sensors (Basel) 2019;19:905.
25. Kim JY, Chu CH, Shin SM. ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens J 2014;14:4230-44.
26. Cheng Y, Li X, Li Z, Jiang S, Li Y, Jia J, et al. AirCloud: a cloud-based air-quality monitoring system for everyone. Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems; 2014 Nov 3-6; Memphis. New York: Association for Computing Machinery; 2014. p. 251-65.
27. Saad SM, Saad ARM, Kamarudin AMY, Zalkaria A, Shakaff AY. Indoor air quality monitoring system using wireless sensor network (WSN) with web interface. 2013 International Conference on Electrical, Electronics and System Engineering (ICEESE); 2013 Dec 4-5; Kuala Lumpur. Piscataway: IEEE; 2013. p. 60-4.
28. Sivasankari B, Prabha CA, Dharini S, Haripriya R. IoT based indoor air pollution monitoring using raspberry pi. Int J Innov Eng Tech 2017;9:16-21.
29. Kang JH, Hwang KI. A comprehensive real-time indoor air-quality level indicator. Sustainability 2016;8:881.
33. Bauer UE, Briss PA, Goodman RA, Bowman BA. Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet 2014;384:45-52.
35. de Laurentiis G, Maniscalco M, Cianciulli F, Stanziola A, Marsico S, Lundberg JO, et al. Exhaled nitric oxide monitoring in COPD using a portable analyzer. Pulm Pharmacol Ther 2008;21:689-93.
37. Kim HK, Moon SJ. Design and implementation of an active risk situation estimation system in smart healthcare using bio and environmental sensors. J Korean Inst Commun Inf Sci 2020;45:914-25.
38. Pani D, Achilli A, Spanu A, Bonfiglio A, Gazzoni M, Botter A. Validation of polymer-based screen-printed textile electrodes for surface EMG detection. IEEE Trans Neural Syst Rehabil Eng 2019;27:1370-7.
39. Azhari A, Yoshimoto S, Nezu T, Iida H, Ota H, Noda Y, et al. A patch-type wireless forehead pulse oximeter for SpO2 measurement. 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS); 2017 Oct 19-21; Turin. Piscataway: IEEE; 2017. p. 1-4.
40. Jang E, Cho G. The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fash Text Res J 2019;21:697-707.
41. Sumbul H, Yuzer AH. Development of diagnostic device for COPD: a MEMS based approach. Int J Comput Sci Netw Secur 2017;17:196-203.
42. Sayem A, Haider J. An overview on the development of natural renewable materials for textile applications. In: Hashmi S, Choudhury IA, editors. Encyclopedia of renewable and sustainable materials. Amsterdam: Elsevier; 2020. p. 822-38.
44. Fernandez-Carames TM, Fraga-Lamas P. Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 2017;7:405.
45. Abro GEM, Shaikh SA, Soomro S, Abid G, Kumar K, Ahmed F. Prototyping IOT based smart wearable jacket design for securing the life of coal miners. 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE); 2018 Aug 16-17; Southend. Piscataway: IEEE; 2018. p. 134-7.
46. Rothmaier M, Selm B, Spichtig S, Haensse D, Wolf M. Photonic textiles for pulse oximetry. Opt Express 2008;16:12973-86.
47. Delavar MR, Gholami A, Shiran GR, Rashidi Y, Nakhaeizadeh GR, Fedra K, et al. A novel method for improving air pollution prediction based on machine learning approaches: a case study applied to the capital city of Tehran. ISPRS Int J Geoinf 2019;8:99.
48. Wang A, Xu J, Tu R, Saleh M, Hatzopoulou M. Potential of machine learning for prediction of traffic related air pollution. Transp Res D Transp Environ 2020;88:102599.
49. Chaloulakou A, Grivas G, Spyrellis N. Neural network and multiple regression models for PM10 prediction in Athens: a comparative assessment. J Air Waste Manag Assoc 2003;53:1183-90.
50. Son S, Kim J. Evaluation and predicting PM10 concentration using multiple linear regression and machine learning. Korean J Remote Sens 2020;36:1711-20.
51. Joun S, Choi J, Bae J. Performance comparison of algorithms for the prediction of fine dust concentration. 2017 Proceedings of Korea Computer Congress; 2017 Jun 18- 20; Jeju. Seoul: The Korean Institute of Information Scientists and Engineers; 2017. p. 775-7.
52. Hussain A, Draz U, Ali T, Tariq S, Irfan M, Glowacz A, et al. Waste management and prediction of air pollutants using IoT and machine learning approach. Energies 2020;13:3930.
53. Cha J, Kim J. Development of data mining algorithm for implementation of fine dust numerical prediction model. J Korea Inst Inf Commun Eng 2018;22:595-601.
54. Cho KW, Jung Y, Lee JS, Oh CH. Separation prediction model by concentration based on deep neural network for improving PM10 forecast accuracy. J Korea Inst Inf Commun Eng 2020;24:8-14.
55. Cho KW, Jung Y, Kang CG, Oh CH. Conformity assessment of machine learning algorithm for particulate matter prediction. J Korea Inst Inf Commun Eng 2019;23:20-6.
56. Munir S, Habeebullah TM, Seroji AR, Morsy EA, Mohammed AM, Saud WA, et al. Modeling particulate matter concentrations in Makkah, applying a statistical modeling approach. Aerosol Air Qual Res 2013;13:901-10.
57. Zang L, Mao F, Guo J, Wang W, Pan Z, Shen H, et al. Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth. Sci Total Environ 2019;658:1256-64.
61. Noh MJ, Park SC. A prediction model of asthma diseases in teenagers using artificial intelligence models. J Inf Technol Appl Manag 2020;27:171-80.
62. Fouad H, Hassanein AS, Soliman AM, Al-Feel H. Analyzing patient health information based on IoT sensor with AI for improving patient assistance in the future direction. Measurement 2020;159:107757.
63. Chang KC, Huang JW, Wu YF. Design of e-health system for heart rate and lung sound monitoring with AI-based analysis. 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW); 2021 Sep 15-17; Penghu. Piscataway: IEEE; 2021. p. 1-2.
64. Semmad A, Bahoura M. Long short term memory based recurrent neural network for wheezing detection in pulmonary sounds. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS); 2021 Aug 9-11; Lansing. Piscataway: IEEE; 2021. p. 412-5.
65. Faustino P, Oliveira J, Coimbra M. Crackle and wheeze detection in lung sound signals using convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:345-8.